Coordinates and Automorphisms of Polynomial and Free Associative Algebras of Rank Three
نویسنده
چکیده
We study z-automorphisms of the polynomial algebra K[x, y, z] and the free associative algebra K〈x, y, z〉 over a field K, i.e., automorphisms which fix the variable z. We survey some recent results on such automorphisms and on the corresponding coordinates. For K〈x, y, z〉 we include also results about the structure of the z-tame automorphisms and algorithms which recognize z-tame automorphisms and z-tame coordinates.
منابع مشابه
The Strong Anick Conjecture Is True
Recently Umirbaev has proved the long-standing Anick conjecture, that is, there exist wild automorphisms of the free associative algebra K〈x, y, z〉 over a field K of characteristic 0. In particular, the well-known Anick automorphism is wild. In this article we obtain a stronger result (the Strong Anick Conjecture that implies the Anick Conjecture). Namely, we prove that there exist wild coordin...
متن کاملALGEBRAS WITH CYCLE-FINITE STRONGLY SIMPLY CONNECTED GALOIS COVERINGS
Let $A$ be a nite dimensional $k-$algebra and $R$ be a locally bounded category such that $R rightarrow R/G = A$ is a Galois covering dened by the action of a torsion-free group of automorphisms of $R$. Following [30], we provide criteria on the convex subcategories of a strongly simply connected category R in order to be a cycle- nite category and describe the module category of $A$. We p...
متن کاملConstants of Weitzenböck Derivations and Invariants of Unipotent Transformations Acting on Relatively Free Algebras
In commutative algebra, a Weitzenböck derivation is a nonzero triangular linear derivation of the polynomial algebra K[x1, . . . , xm] in several variables over a field K of characteristic 0. The classical theorem of Weitzenböck states that the algebra of constants is finitely generated. (This algebra coincides with the algebra of invariants of a single unipotent transformation.) In this paper ...
متن کاملDimension of Automorphisms with Fixed Degree for Polynomial Algebras
Let K[x, y] be the polynomial algebra in two variables over an algebraically closed field K. We generalize to the case of any characteristic the result of Furter that over a field of characteristic zero the set of automorphisms (f, g) of K[x, y] such that max{deg(f), deg(g)} = n ≥ 2 is constructible with dimension n + 6. The same result holds for the automorphisms of the free associative algebr...
متن کاملFinitely Generated Invariants of Hopf Algebras on Free Associative Algebras
We show that the invariants of a free associative algebra of finite rank under a linear action of a finite-dimensional Hopf algebra generated by group-like and skew-primitive elements form a finitely generated algebra exactly when the action is scalar. This generalizes an analogous result for group actions by automorphisms obtained by Dicks and Formanek, and Kharchenko.
متن کامل